Wie man Datenschätze bergen kann

Daten fallen heutzutage überall an. Die gesammelten Datenmengen sind zu gross, zu komplex, zu schnelllebig oder zu schwach strukturiert, um sie mit herkömmlichen Methoden der Datenverarbeitung auswerten zu können. Hier spricht man von Big Data. Dieser Datenberg muss zunächst vernünftig abgelegt und ausgewertet werden, damit aus ihm ein Informationsschatz werden kann. Eine Art, solche Datenmengen zu verwalten, ist die Data Fabric, ein Architekturmuster, um die vielfältigen Herausforderungen mit verteilten Daten zu adressieren. Damit können unterschiedliche Quellen in einer Hybrid- und Multi-Cloud-Landschaft dynamisch orchestriert werden, um Daten bereitstellen zu können, die Anwendungen, Analysen und die Automation von Geschäftsprozessen unterstützen, wie Stephan Schnieber von IBM Technology/Data & AI schreibt. Die Einsatzgebiete von Big Data fallen unterschiedlich aus.
So setzt etwa die Schweizer Börse auf Big Data Analytics, um Marktmanipulation und Insiderhandel zu verhindern. Wie das funktioniert, erklären Christian Müller von Six Exchange Regulation und Matthias Leybold von PwC Schweiz.
Ein weiteres Anwendungsgebiet für Big Data ist das Füttern von Algorithmen zur Entwicklung von künstlicher Intelligenz. Warum das gerade in der Schweiz nicht der beste Ansatz ist, erklärt Pascal Kaufmann, CEO und Gründer von Mindfire und Lab42, im Interview. Er sagt auch, warum wir uns nicht vor künstlicher Intelligenz fürchten müssen und weshalb dem Künstlichen noch die eigentliche Intelligenz fehlt.

Darum büsst die EU Apple und Meta mit 700 Millionen US-Dollar

Betrüger tarnen sich als "Kraken"

Wie sich Kinder und Jugendliche online schützen können

Die dunkle Seite von Verkaufsprovisionen am POS

QNAP stellt RAG-Suchfunktion für Qsirch vor

Zahl der Cyberangriffe in der Schweiz nimmt weiter stark zu

Lenovo erweitert sein Thinkpad-Portfolio

Schweizer Unternehmen sind Vorreiter beim Einsatz von KI

Update: Valiant übernimmt Kundschaft von Coops Finance+
